
A unified approach for the solution of the Fokker-Planck equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 4935

(http://iopscience.iop.org/0305-4470/33/27/311)

Download details:

IP Address: 171.66.16.123

The article was downloaded on 02/06/2010 at 08:27

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/27
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 33 (2000) 4935–4953. Printed in the UK PII: S0305-4470(00)11114-X

A unified approach for the solution of the Fokker–Planck
equation

G W Wei
Department of Computational Science, National University of Singapore, Singapore 117543

Received 18 January 2000

Abstract. This paper explores the use of a discrete singular convolution algorithm as a unified
approach for numerical integration of the Fokker–Planck equation. The unified features of
the discrete singular convolution algorithm are discussed. It is demonstrated that different
implementations of the present algorithm, such as global, local, Galerkin, collocation and finite
difference, can be deduced from a single starting point. Three benchmark stochastic systems,
the repulsive Wong process, the Black–Scholes equation and a genuine nonlinear model, are
employed to illustrate the robustness and to test the accuracy of the present approach for the
solution of the Fokker–Planck equation via a time-dependent method. An additional example, the
incompressible Euler equation, is used to further validate the present approach for more difficult
problems. Numerical results indicate that the present unified approach is robust and accurate for
solving the Fokker–Planck equation.

1. Introduction

Much research has been done in the exploration of accurate and stable computational methods
for the numerical solution of the Fokker–Planck equation [1–25]. A detailed comparison of
several different approaches was given by Park and Petrosian [26] (see [25] for a literature
review). In fact, the solution of the Fokker–Planck equation, in particular the nonlinear
form of this equation, is still a non-trivial problem. In a somewhat broader sense, finding
numerical solutions for partial differential equations (PDEs) is still a challenge owing to the
presence of possible singularities and/or homoclinic manifolds that induce sharp transitions
in the solutions [27]. These phenomena can be observed in many real systems such as black
holes in astronomy, shock waves in compressible fluid flow, vortex sheets in incompressible
flows associated with a high Reynolds number and burst events in the turbulent boundary layer.
The difficulties associated with these phenomena can often be characterized by sharp changes
occurring in a very small spatial region which can strongly influence the global properties
of the system. The presence of these phenomena can be extremely sensitive to numerical
algorithms and can easily lead to numerically induced spatial and/or temporal chaos [28]. At
present, there are two major classes of numerical methods for solving PDEs, namely, global
methods and local methods. In global methods, unknown functions and their derivatives
are expanded in terms of a finite basis set with each element having a global support. The
expansion coefficients are often determined by the method of tau, Galerkin, collocation or
others. In the tau method, the residual for a truncated expansion is required to be orthogonal
to a subset of basis functions used in the expansion, which, together with the boundary
conditions, determines the expansion coefficients. In the global Galerkin method, a new
set of basis functions is constructed by the superposition of the original basis functions. The
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requirement of the residual to be orthogonal to the new set of basis functions, together with
the boundary conditions, determines the expansion coefficients. In the global collocation
approach, the residual vanishes at a subset of nodal points of the highest-order basis function
used in the expansion. The global collocation is also called the pseudospectral method.
The three most important local approaches are the finite-difference, finite-volume and finite-
element methods. In finite-difference methods, the solution is interpolated in terms of a
set of grid values; the spatial derivatives are usually approximated by algebraic expressions
involving nearest-neighbour grid points. In finite-volume approaches, the emphasis is on
a set of integro-differential equations and their associated surface and volume integrations.
The values on the boundary of each ‘numerical molecule’ are usually interpolated by low-
order schemes. The spatial derivatives are approximated in the same way as those used in
the finite-difference methods. Finite-element methods form one of the most versatile classes
of numerical methods. Depending on the system under study, finite-element methods can
be formulated either in terms of the method of weight residuals or in terms of variational
principles. Usually, PDEs are integrated by using a set of trial functions, each with a
small region of support. The solution is represented by linear superpositions of these trial
functions.

Global methods are highly localized in their spectral space, but are unlocalized in the
coordinate space. In contrast, local methods have high spatial localization, but are delocalized
in their spectral space. In general, global methods are much more accurate than local methods,
while the major advantage of local methods is their flexibility in handling complex geometries
and boundary conditions. Moreover, the use of global methods is usually restricted to
structured grids, whereas, local methods can be implemented on block-structured grids and
even unstructured grids.

There were hectic debates among the numerical computation communities over the
advantages and disadvantages of various numerical methods over the past few decades.
These debates stimulated the development of powerful numerical methods for a wide variety
of science and engineering applications. Such developments have, in association with the
availability of inexpensive high-performance computers, led to the establishment of numerical
simulations as an alternative approach for research and applications. The connection of various
numerical methods has always been an important research topic. Finlayson discussed the
relation between the Galerkin and the Ritz variational principle [29]. Canuto et al rearranged
their spectral basis functions so that some global collocation methods could be regarded as
a special case of certain global Galerkin methods [30]. Fornberg addressed the common
feature between pseudospectral methods and high-order finite-difference methods [31]. The
connection between global and local methods can also be realized within the framework of
the method of weighted residuals by choosing trial functions of either piecewise Lagrange
polynomials or global Lagrange polynomials. The connection of the finite-element, finite-
difference and finite-volume methods is now well understood [32]. However, to the best of our
knowledge, none has reported a unified scheme for the discussion of all of the above-mentioned
methods.

In a previous work [25], we proposed a discrete singular convolution (DSC) algorithm and
demonstrated its use for the numerical solution of the Fokker–Planck equation via eigenfunction
expansions. The DSC algorithm was shown to be a potential numerical approach for the Hilbert
transform, Abel transform, Radon transform and delta transform. Three standard problems,
the Lorentz Fokker–Planck equation, the bistable model and the Henon–Heiles system, were
utilized to test the accuracy, reliability and speed of convergence of the DSC eigenfunction
approach. All results were in excellent agreement with those of previous methods in the field.
Recently, the DSC algorithm has been successfully tested for integrating the sine–Gordon
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equation with initial values close to homoclinic orbits [33], which is extremely difficult to
compute because of the possible presence of numerical chaos [28]. Excellent results are
obtained by solving the Navier–Stokes equation and for engineering structural analysis [34].
The purpose of the present paper is twofold. First, we study the unified features of the DSC
algorithm for treating partial differential equations. This is accomplished by focusing on the
DSC kernels of the delta type and their approximations. Second, we explore the use of the
DSC as a unified approach for solving the Fokker–Planck equation via direct explicit time
propagations. The eigenfunction expansion approach provides a Schrödinger-equation-type
picture for understanding the Fokker–Planck equation. However, its use is restricted to a certain
class of Fokker–Planck operators (essentially for the Fokker–Planck operators their equivalent
Schrödinger potentials are bounded from below). The present direct approach is applicable
to a wider class of problems. These two DSC-based approaches have the same level of
accuracy as the numerical solution of the Fokker–Planck equation. They are complementary
to each other for solving a wide variety of Fokker–Planck systems arising from practical
situations.

This paper is organized as follows. The unified features of the DSC algorithm are discussed
in section 2. We demonstrate that, the present DSC algorithm provides a unified framework for
solving the Fokker–Planck equation, and partial differential equations in general. In particular,
we show that various different implementations of the DSC algorithm, such as global, local,
Galerkin, collocation and finite difference, can be deduced from a single starting point. The
application of the present DSC approach to the solution of the Fokker–Planck equation and
Euler equation is presented in section 3. We use four examples to illustrate the present
approach. The first example is the repulsive Wong process which is useful for testing the
ability to handle monomodality–bimodality transition. The second example is the Black–
Scholes equation for option derivatives. This is an interesting stochastic model for option
pricing in financial markets. The third case treated is a nonlinear stochastic model which
has a certain connection to a mean-field model for self-organization processes in biological
systems such as muscle contraction. Notably, all of these problems are treated by an explicit
time-propagation approach in contrast to the eigenfunction expansion used in our previous
work [25]. Since the above-mentioned examples are of strong parabolic type, we consider an
additional problem, the incompressible Euler equation, to further validate the DSC approach
for more difficult problems. The incompressible Euler equation is chosen because its equations
for the velocity vector and pressure field are of strong hyperbolic and elliptic type, respectively.
Thus, this last example is complimentary to three other examples from the point of view of
numerical analysis. This paper ends with a discussion.

2. Properties of the discrete singular convolution

This section presents the properties of the DSC algorithm for solving differential equations.
The first subsection addresses the unified features of the DSC algorithm in the line of the
method of weighted residuals. Relevant properties of DSC trial functions are discussed in the
second subsection.

2.1. Unified features

Without loss of generality, it is assumed that at a fixed time, a stochastic process is governed by a
differential equation. To solve the differential equation, one can start either by approximating
the original differential operator or by approximating the actual solution of the differential
equation while maintaining the original differential operator. The latter is accomplished by
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explicitly defining a functional form for approximations. Let us assume that the differential
equation has the form

Lu(x) = f (x) x ∈ � (1)

where L is a linear operator and u(x) is the unknown solution of interest. Here f (x) is a known
force term and � denotes the domain over which the differential equation applies.

The approximate solution is sought from a finite set of N DSC trial functions of a given
resolution α, denoted by SN,M

α,σ where M is the half-width of the support of each element. Here
σ is a regularization parameter for improving the regularity of the set. The regularization-free
case is easily obtained by setting σ → ∞. Elements of the set SN,M

α,σ can be given explicitly
by {φM

α,σ ;1, φ
M
α,σ ;2, . . . , φ

M
α,σ ;N }. For a given computational domain, the resolution parameter α

is determined by N .
An important property of the DSC trial functions {φM

α,σ ;k} is that when the trial function
is free of regularization, each member of the set is a reproducing kernel at highest resolution

lim
α→∞〈φM

α,σ ;k, η〉 = η(xk) (2)

where 〈· , ·〉 denotes the standard inner product. In fact, if an appropriate basis is used for φ
and the limit on σ is taken, φ of each resolution can be a reproducing kernel for L2 functions
bandlimited in an appropriate sense. In general, we require the low-pass filter property that
for given α �= 0, σ �= 0 and M � 0

〈φM
α,σ ;k, η〉 ≈ η(xk). (3)

This converges uniformly when the resolution is refined, e.g. α → ∞. Many examples of
such DSC trial functions are given in [25, 35]. Further discussion on these functions is given
in the next subsection. Equations (2) and (3) are special requirements satisfied by the DSC
kernels of delta type [25].

In the present DSC approach, an approximation to the function of interest u(x) can be
expressed as a linear combination

UN,M
α,σ (x) =

N∑
k=1

Uα,σ ;k φM
α,σ ;k(x) (4)

where x is an independent variable and Uα,σ ;k is a DSC approximation to the solution required
at point xk . This structure is due to the DSC trial function property (3) and it dramatically
simplifies the solution procedure in practical computations.

In this formulation, we choose the set SN,M
α,σ a priori, and then determine the coefficients

{Uα,σ ;k} so that UN,M
α,σ (x) is a good approximation to u(x). To determine Uα,σ ;k , we minimize

the amount by which UN,M
α,σ (x) fails to satisfy the original governing equation (1). A measure

of this failure can be defined as

RN,M
α,σ (x) ≡ LUN,M

α,σ (x) − f (x) (5)

where RN,M
α,σ (x) is the residual for a particular choice of resolution, regularization and half-

width of the support. Note that equation (5) is similar to the usual statement in the method
of weighted residuals. However, the approximation UN,M

α,σ (x) is constructed by using the
DSC trial functions, φM

α,σ ;k(x), in the present treatment. Let equation (1) and its associated
boundary conditions be well posed, then there exists a unique solution u(x) which generally
resides in an infinite-dimensional space. Since the DSC approximation UN,M

α,σ is constructed
from a finite-dimensional set, it is generally the case that UN,M

α,σ (x) �= u(x) and therefore
RN,M

α,σ (x) �= 0.
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Galerkin. We seek to optimize RN,M
α,σ (x) by forcing it to zero in a weighted average sense

over the domain �. A convenient starting point is∫
�

RN,M
α,σ (x) φM ′

α′,σ ′;l(x) dx = 0 φM ′
α′,σ ′;l(x) ∈ S

N ′,M ′
α′,σ ′ (6)

where the weight set SN ′,M ′
α′,σ ′ can be simply chosen to be identical to the DSC trial function set

SN,M
α,σ . We refer to equation (6) as a DSC-Galerkin statement.

Collocation. First, we note that in view of equation (2), the present DSC-Galerkin statement
reduces to a collocation one at the limit of α′

lim
α′→∞

∫
�

RN,M
α,σ (x) φM ′

α′,σ ′;l(x) dx = RN,M
α,σ (xl) = 0 (7)

where {xl} is the set of collocation points. However, in digital computations, we cannot take
the above limits. It follows from the low-pass filter property of the DSC trial functions,
equation (3), that∫

�

RN,M
α,σ (x) φM ′

α′,σ ′;l(x) dx ≈ RN,M
α,σ (xl) ≈ 0. (8)

It can be proven that for an appropriate choice of SN ′,M ′
α′,σ ′ , the first approximation of equation (8)

converges uniformly. The difference between the true DSC-collocation,

lim
α′→∞

RN,M
α,σ (xl) = 0 (9)

and the Galerkin-induced collocation, (8), diminishes to zero for appropriate DSC trial
functions.

Global and local. Global approximations to a function and its derivatives are realized
typically by a set of truncated L2(a, b) function expansions. It is called global because the
values of a function and its derivatives at a particular point xi in the coordinate space involve
the full set of grid points in a computational domain �. Whereas a local method does so by
requiring only a few nearest-neighbour points. In the present DSC approach, since the choices
of M and/or M ′ are independent of N , one can choose M and/or M ′ so that a function and
its derivatives at a particular point xl are approximated either by the full set of grid points
in the computational domain � or just by a few nearest-neighbour grid points. In fact, this
freedom for the selection of M endows the DSC algorithm with controllable accuracy for
solving differential equations and the flexibility for handling complex geometries.

Finite difference. In the finite-difference method, the differential operator is approximated by
difference operations. In the present approach, the DSC-collocation expression of equation (8)
is equivalent to a (2M + 1)- (or 2M-) term finite-difference method. This follows from the fact
that the DSC approximation to the nth-order derivative of a function can be rewritten as

dqu

dxq

∣∣∣∣
x=xk

≈
k+M∑

l=k−M

c
q

kl,Mu(xl) (10)

where cqkl,M are a set of DSC weights for the finite-difference approximation and are given by

c
q

kl,M = dq

dxq
φM
α,σ ;l(x)

∣∣∣∣
x=xk

. (11)
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Obviously, for each different choice of φM
α,σ , we have a different DSC finite-difference

approximation. Hence, the present DSC approach is a generalized finite-difference method.
This DSC finite difference was tested in previous studies [35]. When M = 1, the DSC finite-
difference approximation reaches its low-order limit and the resulting matrix is tridiagonal.
In this case, the present DSC weights c

q

kl,M can always be made exactly the same as those
of the second-order central-difference scheme (i.e. 1

2�, 0,− 1
2� for the first-order derivative

and 1
�2 ,− 2

�2 ,
1
�2 for the second-order derivative, where � is the grid spacing) of the standard

finite-difference method by choosing the parameter σ appropriately. However, even in this
case, the DSC finite-difference approximation does not have to be the same as the standard
finite-difference scheme and can be optimized in a practical application by varying σ .

2.2. DSC trial functions

There are many DSC trial functions that satisfy equation (3). The requirement of equation (3)
can be regarded as an approximate reproducing kernel or quasi-reproducing kernel. The reason
for using an approximate reproducing kernel can be understood from the following analysis
of Shannon’s kernel sin(αx)

πx
. Shannon’s kernel is a delta sequence

lim
α→∞

sin(αx)

πx
= δ(x) (12)

where δ(x) is the delta distribution which can be regarded as a universal reproducing kernel
because its Fourier transform is unity. However, such a universal reproducing kernel cannot
be used directly in digital computations because it is a distribution (precisely, it belongs to
Sobolev space of order −1, H−1) and it does not have a value anywhere in the coordinate
space. Therefore, in a certain sense, constructing a reproducing kernel in an appropriate
L2(a, b) space is equivalent to finding a sequence of approximations of the delta distribution
in the L2(a, b). In fact, Shannon’s kernel is an element of the Paley–Wiener reproducing
kernel Hilbert space B2

π ,

f (x) =
∫ ∞

−∞
f (y)

sin π(x − y)

π(x − y)
dy ∀f ∈ B2

π (13)

where ∀f ∈ B2
π indicates that, in its Fourier representation, the L2 function f vanishes outside

the interval [−π, π ]. What is important for digital computations is the fact that the Paley–
Wiener reproducing kernel Hilbert space has a sampling basis Sk(x)

Sk(x) = sin π(x − yk)

π(x − yk)
yk = k ∀k ∈ Z (14)

where the symbol Z denotes the set of all integers. Expression (14) provides a discrete
representation of every (continuous) function in B2

π

f (x) =
∑
k∈Z

f (yk)Sk(x) ∀f ∈ B2
π . (15)

This is Shannon’s sampling theorem and is particularly important in information and sampling
theory. Note that Shannon’s kernel is obviously interpolative on Z ,

Sn(xm) = δn,m (16)

where δn,m is the Kronecker delta function. Computationally, being interpolative is of particular
importance for numerical accuracy and simplicity.

In wavelet analysis, sin(πx)
πx

is Shannon’s wavelet scaling function and its Fourier transform
is a characteristic function, i.e. it is an unsmoothed, ideal low-pass filter. In physical language,
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it is a projection to the frequency subband [−π, π ]. By the Heisenberg uncertainty principle,
such a (sharp) projection must be an infinite impulse response (IIR) filter. The usefulness of
such a filter is limited because it is delocalized in the coordinate space and requires infinitely
many sampling data. In practical computations, a truncation is required, which leads to a
large truncation error and even worse, numerical instability. To improve the smoothness and
regularity of Shannon’s kernel, we introduce a regularization

"σ(x) = sin(πx)

πx
Rσ (x) (σ > 0) (17)

where Rσ is a regularizer which has properties

lim
σ→∞Rσ (x) = 1 (18)

and

Rσ (0) = 1. (19)

Here equation (18) is a general condition that a regularizer must satisfy, while equation (19) is
specifically for a delta regularizer, which is used in regularizing a delta kernel. Various delta
regularizers can be used for numerical computations. An excellent one is the Gaussian

Rσ (x) = exp

[
− x2

2σ 2

]
. (20)

An immediate benefit of the regularized Shannon’s kernel, equation (17), is that its Fourier
transform is infinitely differentiable because the Gaussian is an element of the Schwartz
class functions. Qualitatively, all kernels of the Dirichlet type oscillate in the coordinate
representation. Specifically, Shannon’s kernel has a long tail which is proportional to 1

x
,

whereas, the regularized kernels decay exponentially fast, especially when σ is very small.
In the Fourier representation, regularized Shannon kernels have an ‘optimal’ shape in their
frequency responses. Of course, they all reduce to Shannon’s low-pass filter in the limit

lim
σ→∞"σ(x) = lim

σ→∞
sin πx

πx
exp

[
− x2

2σ 2

]
= sin πx

πx
. (21)

Quantitatively, one can examine the normalization of "σ(x)∫
"σ(x) dx = "̂σ (0)

=
√

2πσ
∞∑
k=0

(−1)k

k!(2k + 1)

(
πσ√

2

)2k

(22)

= erf

(
πσ√

2

)

= 1 −
√

2

π

1

σ
exp

[− 1
2σ

2π2
] ∫ ∞

0
exp

[
− t2

2σ 2
− πt

]
dt

= 1 − erfc

(
πσ√

2

)
(23)

�= 1 (24)

where

erf(z) = 2√
π

∫ z

0
e−t2

dt
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is the error function and erfc(z) is the complementary error function. Note that for a given
σ > 0, erfc(πσ/

√
2) is positive definite. Thus, "̂σ (0) is always less than unity except at the

limit of σ → ∞. Therefore, "σ(x) is no longer a reproducing kernel. However, we argue that
"σ(x) is an approximate reproducing kernel because when we choose σ � √

2/π , which is
the case in many practical applications, the residue term, erfc(πσ/

√
2), approaches zero very

quickly. As a result, "̂σ (0) is extremely close to unity. As trial functions, regularized Shannon
kernels do not form a sampling basis. They are no longer orthogonal in general. However,
they just slightly miss the orthogonality and the requirement of a basis.

For numerical computations, it turns out that the approximate reproducing kernel has much
fewer truncation errors for interpolation and numerical differentiations. Qian and the present
author [36] have recently given the following theorem for truncation errors.

Theorem. Let f be a function f ∈ L2(R)∩Cs(R), bandlimited to B, (B < π
�
, � is the grid

spacing). For a fixed t ∈ R and σ > 0, denote g(x) = f (x)Hk((t − x)/
√

2σ), where Hk(x)

is the kth-order Hermite polynomial. If g(x) satisfies

g′(x) � g(x)
(x − t)

σ 2
(25)

for x � t + (M1 − 1)�, and

g′(x) � g(x)
(x − t)

σ 2
(26)

for x � t − M2�, where M1,M2 ∈ N , then for any s ∈ Z+∥∥∥∥∥f (s)(t) −
�t/��+M1∑

n=�t/��−M2

f (n�)

[
sin[(π/�)(t − n�)]

(π/�)(t − n�)
exp

(
− (t − n�)2

2σ 2

)](s)
∥∥∥∥∥
L2(R)

�
√

3

[
‖f (s)(t)‖L2(R)

2πσ(π/� − B) exp
[

1
2

(
σ 2(π/� − B)2

)]
+‖f (t)‖L2(R)

[ ∑
i+j+k=s

s!πi−1Hk(−M1�/
√

2σ)

i!k!�i−1(
√

2σ)k((M1 − 1)�)j+1

]
exp

(
− (M1�)2

2σ 2

)

+‖f (t)‖L2(R)

[ ∑
i+j+k=s

s!πi−1Hk(−M2�/
√

2σ)

i!k!�i−1(
√

2σ)k(M2�)j+1

]
exp

(
− (M2�)2

2σ 2

)]
(27)

where the superscript s denotes the sth-order derivative.

The proof and detailed discussion (including a comparison with the truncation errors of
Shannon’s sampling theorem) are given in [36] and are beyond the scope of this paper.

This theorem provides a guide to the choice of M , σ and �. For example, in the case of
interpolation (s = 0), if the L2 norm error is set to 10−η (η > 0), the following relations can
be deduced from equation (27):

r(π − B�) >
√

4.61η (28)

and
M

r
>

√
4.61η (29)

where r = σ/�. (The choice of σ is always proportional to � so that the width of the
Gaussian envelope varies with the central frequency.) The first inequality states that for a
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given grid size �, a large r is required for approximating the high-frequency component
of an L2 function. The second inequality indicates that if one chooses the ratio r = 3,
then the half bandwidth M ∼ 30 can be used to ensure the highest accuracy in a double-
precision computation (η = 15). However, for lower accuracy requirement, a much smaller
half bandwidth can be used. In general, the value of r is proportional to M . The use of M
values is determined by the accuracy requirement. This theoretical estimation is in excellent
agreement with a previous numerical test [35].

3. Illustrative calculations

In this section, we illustrate the use of the present approach for solving the Fokker–Planck
equation and the incompressible Euler equation. Many DSC kernels are discussed in the
previous work [25, 35] and they can be used as the DSC trial functions. For simplicity, we
focus on three DSC kernels, a regularized Shannon’s kernel (RSK),

φM
(π/�),σ ;k(x) = sin[(π/�)(x − xk)]

(π/�)(x − xk)
exp

[
− (x − xk)

2

2σ 2

]
(30)

a regularized Dirichlet kernel (RDK),

φM
(π/�),σ ;k(x) = sin [(π/�)(x − xk)]

(2m + 1) sin [(π/�)(x − xk)/(2m + 1)]
exp

[
− (x − xk)

2

2σ 2

]
(31)

and a regularized Lagrange kernel (RLK)

φM
(π/�),σ ;k(x) =

2m∏
i �=k

x − xi

xk − xi
exp

[
− (x − xk)

2

2σ 2

]
(32)

for our numerical test. Note that the resolution is given by α = π
�

, which is the frequency
bound in the Fourier representation. The goal of this section is to test the present method for
the solutions of the Fokker–Planck equation via time propagation and the incompressible Euler
equation. For the numerical solution of the Fokker–Planck equation, we choose σ = 3.8� for
the RSK and RDK, σ = 2.8� for the RLK, where π/� is the resolution. In fact, a wide range
of σ values can be used to deliver excellent results. The half bandwidth, M , can be chosen
to interplay between the local limit and the global limit and is set to 40 in all calculations.
Finally, m controls the order of the regularized Dirichlet and Lagrange kernels and is set
to 40 in all calculations (note that the selection of m is independent of the grid used in the
computation). It is noted that all of the above-mentioned DSC trial functions are of Schwartz
class and are capable of auto-regularizing when used as integral kernels. The fourth-order
explicit Runge–Kutta scheme is used for time discretization. Details of these computations are
described in the first three subsections. For treating the incompressible Euler equation, many
other DSC parameters are tested as indicated in the last subsection. Double precision is used
in all calculations.

3.1. The repulsive Wong process

One of important stochastic systems is the repulsive Wong process [20, 37–39], given by

dx = 2γ tanh(x) dt +
√

2 dFt (33)

where dFt is the Gaussian white noise which has the standard statistical properties

〈dFt 〉 = 0 (34)
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and

〈dFt , dFτ 〉 = δ(|t − τ |). (35)

The repulsive Wong process is Markovian due to the deriving Gaussian white noise term.
Its transition probability density is governed by the Fokker–Planck equation of the form [37–39]

∂f (x, t)

∂t
= −2γ

∂[tanh(x)f (x, t)]

∂x
+
∂2f (x, t)

∂x2
(36)

with the usual initial condition

f (x, 0) = δ(x − x0) (37)

and the normalization∫ ∞

−∞
f (x, t) dt = 1. (38)

For γ = 1, the solution [38, 39] of the Fokker–Planck equation (36) is analytically given by
(for x0 = 0)

f (x, t) = 1

2
√

4πt

[
exp

[
− (x − x−)2

4t

]
+ exp

[
− (x − x+)

2

4t

]]
(39)

wherex± = ±2t are centres of two moving Gaussians. Here the superposition of two Gaussians
gives rise to a monomodality–bimodality transition as time increases. The Wong process is
useful for illustrating the connection between stochastic processes and quantum measurements.
It is also useful for distinguishing spectrum differences between the Master equation and its
Fokker–Planck equation approximations.

The accurate simulation of the Wong process is not a simple task because of the
monomodality–bimodality transition. Two Gaussian peaks centred at x± = ±2t move apart
as time increases. The computational domain has to be sufficiently large in order to avoid
boundary reflection (otherwise, more complicated techniques, such as absorption boundaries,
have to be implemented). In the present computations, the resolution is chosen as π

�
= 10π .

The initial functions are approximated by a unit impulse function located at 0. Equation (36)
is integrated up to 10 time units with a time increment of 0.001. The errors for a wide range
of propagation times are listed in table 1 and are measured by error norms of L2 and L∞. It is
seen that the present unified approach is extremely accurate and reaches the level of machine
precision. All of the DSC kernels behave very similarly to each other and provide the same
level of accuracy and speed of convergence. In fact, other DSC kernels, such as the regularized
modified Dirichlet kernel, provide similar results. The results of the RSK and RDK are slightly
more accurate than those of the RLK. It is evident that the present unified method, in association
with the DSC trial functions, is capable of delivering extremely high accuracy and numerical
stability for the Wong process. To the best of our knowledge, the DSC solution for this system
is the best to date.

3.2. The Black–Scholes equation

The Fokker–Planck equation and stochastic analysis have interesting applications in
mathematical modelling of financial market option pricing. Consider a writer of a European
call option on a stock, he is exposed to the risk of unlimited liability if the stock price rises
acutely above the strike price. To protect his short position in the option, he should consider
purchasing a certain amount of stock so that the loss in the short position in the option is offset
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Table 1. Errors for solving the repulsive Wong process.

RSK RDK RLK

Time L2 L∞ L2 L∞ L2 L∞

0.10 1.94(−09) 2.32(−09) 1.94(−09) 2.32(−09) 1.94(−09) 2.32(−09)
0.25 4.67(−11) 3.73(−11) 4.67(−11) 3.73(−11) 4.67(−11) 3.72(−11)
0.50 3.47(−12) 2.05(−12) 3.47(−12) 2.05(−12) 3.47(−12) 2.03(−12)
0.75 8.76(−13) 4.89(−13) 8.76(−13) 4.95(−13) 8.83(−13) 4.60(−13)
1.00 3.57(−13) 1.83(−13) 3.57(−13) 1.91(−13) 3.78(−13) 1.91(−13)
2.00 6.29(−14) 2.69(−14) 5.92(−14) 3.00(−14) 2.18(−13) 8.92(−14)
3.00 4.72(−14) 2.04(−14) 3.60(−14) 1.63(−14) 2.86(−13) 9.76(−14)
4.00 5.23(−14) 1.97(−14) 3.76(−14) 1.39(−14) 3.53(−13) 1.12(−13)
5.00 4.44(−14) 1.19(−14) 3.16(−14) 1.12(−14) 4.10(−13) 1.21(−13)
6.00 5.87(−14) 1.88(−14) 5.23(−14) 1.64(−14) 4.68(−13) 1.32(−13)
7.00 7.63(−14) 2.38(−14) 7.30(−14) 2.16(−14) 5.25(−13) 1.43(−13)
8.00 9.27(−14) 2.78(−14) 9.08(−14) 2.58(−14) 5.80(−13) 1.54(−13)
9.00 7.19(−14) 1.99(−14) 6.24(−14) 1.79(−14) 6.33(−13) 1.63(−13)
10.0 6.98(−14) 1.70(−14) 5.25(−14) 1.39(−14) 6.87(−13) 1.73(−13)

by the long position in the stock. In this way, he is adopting a hedging procedure. A hedge
position combines an option with its underlying asset so as to achieve the goal that either the
stock protects the option against loss or the option protects the stock against loss. This risk-
monitoring strategy has been commonly used by practitioners in financial markets. The most
well known stochastic model for the equilibrium condition between the expected return on
the option, the expected return on the stock and the riskless interest rate is the Black–Scholes
equation [40]

∂c

∂t
= ν2

2
S2 ∂

2c

∂S2
+ rS

∂c

∂S
− rc (40)

where S is the asset price which undergoes geometric Brownian motion, c(S, t) the call price, ν
the volatility and r the constant riskless interest rate. Black–Scholes equation is a fundamental
equation in finance and economics and is also an excellent example application of stochastic
analysis. By a simple transformation

x = ln S (41)

and

f (x, t) = ert c(x, t) (42)

the Black–Scholes equation is transformed into the Fokker–Planck equation of the standard
form

∂f

∂t
= (

r − 1
2ν

2
) ∂f
∂x

+
ν2

2

∂2f

∂x2
. (43)

The numerical simulation of the Black–Scholes equation and its generalized versions is
an important issue in financial analysis and the computational finance community [41–44].
Essentially, all existing numerical methods are tested for potential usefulness in estimating the
option derivatives because both computational accuracy and efficiency are very important to
option modelling and risk estimation. In the present time-dependent approach, the resolution
is set to π

�
= 2π and the time increment is chosen as 0.01. For simplicity, we choose

1
2ν

2 = 0.5 and r = 0.7 in our calculations. We have chosen our initial distribution as a unit
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Table 2. Errors for the numerical solution of the Black–Scholes equation.

RSK RDK RLK

Time L2 L∞ L2 L∞ L2 L∞

1 1.85(−03) 1.14(−03) 1.83(−03) 1.12(−03) 2.18(−03) 1.41(−03)
2 1.19(−04) 8.55(−05) 1.18(−04) 8.45(−05) 1.42(−04) 1.06(−04)
3 4.57(−06) 2.89(−06) 4.48(−06) 2.84(−06) 6.44(−06) 4.29(−06)
4 2.53(−07) 1.68(−07) 2.46(−07) 1.63(−07) 4.23(−07) 2.84(−07)
5 1.81(−08) 1.15(−08) 1.75(−08) 1.10(−08) 3.66(−08) 2.43(−08)
6 1.63(−09) 1.09(−09) 1.56(−09) 1.04(−09) 4.02(−09) 2.74(−09)
7 1.81(−10) 1.26(−10) 1.71(−10) 1.19(−10) 5.48(−10) 3.92(−10)
8 2.41(−11) 1.59(−11) 2.25(−11) 1.48(−11) 9.03(−11) 6.05(−11)
9 3.83(−12) 2.55(−12) 3.54(−12) 2.37(−12) 1.76(−11) 1.15(−11)

10 7.82(−13) 6.25(−13) 7.30(−13) 5.85(−13) 4.01(−12) 2.84(−12)
20 4.86(−14) 2.70(−14) 4.91(−14) 2.78(−14) 4.84(−14) 2.74(−14)

impulse function located at x = 0, which is a poor approximation to the true delta distribution.
Obviously, had one started with a smooth initial function, or used a denser grid, one would have
obtained much higher accuracy at earlier times as well. We have verified this computationally,
but these results are not presented. Both L2 and L∞ error analyses are used to evaluate the
quality of the DSC approach, the results of which are listed in table 2. To the best of our
knowledge, the present time-dependent DSC approach provides the most accurate numerical
results yet obtained for the Black–Scholes equation.

As in the first example, three DSC kernels provide extremely similar results in solving the
Black–Scholes equation. This is not an isolated coincidence. In fact, we can come up with a
number of other DSC kernels where all of their results are very similar to those of the present
three kernels.

3.3. A nonlinear stochastic model

To illustrate the accuracy and robustness of the present approach further, we choose the
following nonlinear stochastic model:

∂f (x, t)

∂t
= ∂[(ωx + θ〈x(t)〉)f (x, t)]

∂x
+ D

∂2f (x, t)

∂x2
(44)

where 〈x(t)〉 is the first moment of the distribution function

〈x(t)〉 =
∫ ∞

−∞
xf (x, t) dx (45)

and ω, θ and D are constant. The initial probability distribution is also given by

f (x, 0) = δ(x − x0). (46)

Equation (44) is a true nonlinear stochastic model since the instantaneous position average
depends on the distribution function. This is one of few analytically solvable nonlinear systems
which are very valuable for testing new numerical approaches. For example, Drozdov and
Morillo have recently employed this system to test their K-point Stirling interpolation formula
finite-difference method [23]. The exact solution to equation (44) is

f (x, t) = 1√
2πν(t)

exp

[
− (x − 〈x(t)〉)2

2ν(t)

]
(47)
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Table 3. Errors for solving the nonlinear model.

RSK RDK RLK

Time L1 L∞ L1 L∞ L1 L∞

1 4.13(−01) 3.09(−02) 6.46(−01) 4.71(−02) 4.67(−02) 3.98(−03)
2 4.66(−01) 3.68(−02) 7.41(−01) 5.86(−02) 2.48(−03) 2.27(−04)
3 2.03(−01) 1.68(−02) 3.26(−01) 2.68(−02) 7.24(−04) 6.51(−05)
4 4.88(−02) 4.92(−03) 7.97(−02) 8.04(−03) 1.23(−04) 1.31(−05)
5 7.41(−03) 7.84(−04) 1.22(−02) 1.29(−03) 1.68(−05) 1.82(−06)
6 1.02(−03) 1.12(−04) 1.68(−03) 1.84(−04) 2.26(−06) 2.48(−07)
7 1.38(−04) 1.52(−05) 2.28(−04) 2.50(−05) 3.06(−07) 3.36(−08)
8 1.87(−05) 2.05(−06) 3.09(−05) 3.38(−06) 4.14(−08) 4.54(−09)
9 2.53(−06) 2.77(−07) 4.17(−06) 4.58(−07) 5.59(−09) 6.13(−10)

10 3.42(−07) 3.75(−08) 5.65(−07) 6.19(−08) 7.56(−10) 8.29(−11)
20 3.64(−14) 3.11(−15) 4.75(−14) 4.88(−15) 1.00(−13) 1.51(−14)

where 〈x(t)〉 and ν(t) are given analytically by

〈x(t)〉 = x0e−(ω+θ)t (48)

and

ν(t) = D

ω

(
1 − e−2ωt

)
(49)

respectively. Obviously, ν(t) is the theoretical value of the second moment M2(t)

M2(t) = 〈x2(t)〉 − 〈x(t)〉2 (50)

which can also be used as a measure of computational accuracy.
In the present computations, the resolution is chosen as π

�
= 239

20 π . The time increment
is taken as �t = 0.005. In this example, the errors are measured by error norms of L1 and
L∞ from which all other error norms, such as the L2 error norm, can be interpolated. The L1

and L∞ errors are listed in table 3, for D = 0.1, ω = 1, θ = 2 and x0 = 2.0422. The initial
accuracy of computations is hindered by the poor approximation of the impulse function to
the Dirac delta function. However, the auto-regularization property of the Schwartz class trial
functions enables the numerical integration to stabilize on a smooth solution and eventually
reach the machine precision at a slightly later time.

3.4. The Euler equation

All cases considered in the last three subsections are of strong parabolic type with a solution
which becomes more and more flat and smooth as time increases. In this subsection, we
consider an additional problem, the incompressible Euler equation, to confirm that the results
obtained for the Fokker–Planck equation are not due to the parabolic nature. We also use this
example to demonstrate the interconnection between the collocation and the finite difference,
and between the local and the global methods. It is hoped that this additional example helps to
build confidence in using the DSC approach for treating more difficult problems. Conceptually
and numerically, it is convenient to describe the incompressible Euler equation from the point
of view of the incompressible Navier–Stokes equation

∂v

∂t
+ v · ∇v = −∇p +

1

Re
∇2v (51)

∇ · v = 0 (52)
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where v is the velocity field vector, p is the pressure field and Re is the Reynolds number. The
Euler equation is attained by setting Re = ∞. Finding a general solution to the Euler equation
is not an easy job. In the present study, we consider a solution domain of [0, 2π ] × [0, 2π ]
with periodic boundary conditions. Under such a constraint, the Navier–Stokes equation (51)
has an exact solution

u(x, y, t) = − cos(x) sin(y) e−2t/Re

v(x, y, t) = sin(x) cos(y) e−2t/Re (53)

p(x, y, t) = − 1
4 [cos(2x) + cos(2y)] e−4t/Re

where (u, v) are the velocity components in the x- and y-directions, respectively. Note that,
for the Euler equation, the solution (53) does not decay with time.

In the present study, we use a standard approach for treating the incompressible Navier–
Stokes equation, i.e. deriving a Poisson equation for the pressure from the incompressible
condition. The velocity fields are iterated by using the implicit Euler scheme. At time tn+1,
there are two coupled equations for the velocity field(

1

Re
∇2 − 1

�t

)
un+1 = pn+1/2

x + Sn
x (54)

(
1

Re
∇2 − 1

�t

)
vn+1 = pn+1/2

y + Sn
y (55)

and a Poisson equation for the pressure

∇2pn+1/2 = Sn
p. (56)

Here Sn
x , S

n
y and Sn

p are given by

Sn
x = − un

�t
+ (ununx + vnuny)

Sn
y = − vn

�t
+ (unvnx + vnvny ) (57)

Sn
p = 1

�t
(unx + vny ) − (unx)

2 − (vny )
2 − 2unyv

n
x .

At each time tn+1, the pressure field pn+1/2 is solved according to equation (56) from the known
velocity field vector (un, vn). The velocity field vector (un+1, vn+1) is then updated according
to equations (54) and (55). These linear algebraic equations are solved by using a standard
(LU decomposition) solver.

The derivatives in equations (54)–(56) are computed by using the generalized finite-
difference scheme, equation (10), and the required finite difference weights are given by
equation (11). The involved trial functions, φM

α,σ , are given by the RSK (equation (30)), the
RDK (equation (31)) and the RLK (equation (32)). Here m = 40 is used for both RDK and
RLK. We choose a small time increment (�t = 0.001) so that the main error is caused by the
spatial discretization. The number of grid points in each dimension is chosen as N = 4, 8, 16
and 32 in various test calculations. The α value is specified as

α = π

�
= π

2π/(N − 1)
= N − 1

2
.

For a given N , the matrix half bandwidth, M , can be chosen as M � N . In particular, if
M = N , the approach has a global (full) computational matrix. For all M < N , the matrix
is banded. In the present DSC approach, the connection between the global and the local can
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Table 4. Errors for solving the Euler equation.

RSK RDK RLK

N M Time L1 L∞ L1 L∞ L1 L∞

4 1 0.5 3.16(−2) 6.12(−2) 3.15(−2) 6.12(−2) 3.09(−2) 6.01(−2)
1.0 3.10(−2) 6.02(−3) 3.09(−2) 6.01(−3) 3.03(−2) 5.88(−3)
1.5 3.06(−2) 5.90(−3) 3.05(−2) 5.89(−3) 2.99(−2) 5.73(−3)
2.0 3.04(−2) 5.77(−3) 3.04(−2) 5.76(−3) 2.99(−2) 5.57(−3)

2 0.5 1.27(−2) 2.48(−3) 1.27(−2) 2.48(−3) 1.29(−2) 2.44(−3)
1.0 1.31(−2) 2.66(−3) 1.31(−2) 2.66(−3) 1.29(−2) 2.54(−3)
1.5 1.37(−2) 2.86(−3) 1.37(−2) 2.87(−3) 1.32(−2) 2.66(−3)
2.0 1.44(−2) 3.08(−3) 1.45(−2) 3.08(−3) 1.35(−2) 2.78(−3)

4 0.5 9.33(−3) 1.70(−3) 9.32(−3) 1.69(−3) 9.34(−3) 1.70(−3)
1.0 9.43(−3) 1.79(−3) 9.42(−3) 1.79(−3) 9.44(−3) 1.79(−3)
1.5 9.62(−3) 1.88(−3) 9.61(−3) 1.88(−3) 9.64(−3) 1.88(−3)
2.0 9.92(−3) 1.96(−3) 9.91(−3) 1.95(−3) 9.93(−3) 1.96(−3)

8 8 0.5 1.30(−4) 4.26(−5) 1.33(−4) 4.36(−5) 1.24(−4) 3.40(−5)
1.0 1.52(−4) 5.13(−5) 1.54(−4) 5.25(−5) 1.54(−4) 4.79(−5)
1.5 1.82(−4) 6.10(−5) 1.83(−4) 6.26(−5) 1.92(−4) 5.66(−5)
2.0 2.17(−4) 7.13(−5) 2.16(−4) 7.32(−5) 2.34(−4) 6.72(−5)

16 16 0.5 6.30(−10) 2.37(−10) 6.75(−10) 2.76(−10) 1.23(−8) 3.63(−9)
1.0 6.76(−10) 2.40(−10) 6.82(−10) 2.87(−10) 1.56(−8) 5.16(−9)
1.5 8.00(−10) 2.65(−10) 7.57(−10) 3.18(−10) 1.99(−8) 6.76(−9)
2.0 9.68(−10) 3.35(−10) 8.81(−10) 3.49(−10) 2.48(−8) 8.53(−9)

32 4 0.5 5.25(−4) 2.10(−4) 5.24(−4) 2.10(−4) 2.37(−3) 7.14(−4)
1.0 7.40(−4) 2.88(−4) 7.41(−4) 2.90(−4) 2.96(−3) 1.00(−3)
1.5 1.04(−3) 4.25(−4) 1.04(−3) 4.27(−4) 3.75(−3) 1.33(−3)
2.0 1.40(−3) 5.87(−4) 1.40(−3) 5.89(−4) 4.62(−3) 1.67(−3)

8 0.5 1.78(−6) 7.32(−7) 1.93(−6) 7.95(−7) 9.50(−7) 3.05(−7)
1.0 2.41(−6) 1.06(−6) 2.62(−6) 1.15(−6) 1.24(−6) 5.22(−7)
1.5 3.23(−6) 1.39(−6) 3.51(−6) 1.51(−6) 1.64(−6) 7.73(−7)
2.0 4.17(−6) 1.79(−6) 4.52(−6) 1.92(−6) 2.09(−6) 1.03(−6)

16 0.5 6.95(−11) 2.93(−11) 9.52(−11) 4.00(−11) 1.90(−10) 5.73(−11)
1.0 7.48(−11) 3.23(−11) 1.03(−10) 4.42(−11) 2.40(−10) 8.15(−11)
1.5 8.06(−11) 3.51(−11) 1.11(−10) 4.81(−11) 3.04(−10) 1.08(−10)
2.0 8.67(−11) 3.79(−11) 1.19(−10) 5.19(−11) 3.76(−10) 1.36(−10)

32 0.5 1.02 (−14) 6.99(−15) 1.36(−14) 1.21(−14) 1.10(−14) 7.88(−15)
1.0 2.03(−14) 1.45(−14) 2.51(−14) 1.80(−14) 2.22(−14) 1.54(−14)
1.5 2.98(−14) 1.88(−14) 3.68(−14) 2.74(−14) 3.54(−14) 2.22(−14)
2.0 4.05(−14) 2.31(−14) 5.04(−14) 3.13(−14) 4.80(−14) 3.12(−14)

be easily achieved by selecting an M value for a given N . In particular, if M � N , the DSC
approach behaves truly like a finite-difference scheme. To achieve optimal (or near optimal)
accuracy, the σ is chosen in proportion to M and �. When M = 32, 16, 8, 4, 2 and 1, σ

�

are chosen as 3.2, 2.5, 1.8, 1.2, 0.9 and 0.6 for both RSK and RDK, and 2.8, 2.0, 1.6 1.0 0.8
and 0.6 for RLK. We compute the L2 and L∞ errors of u for a number of combinations of
N and M and the results are listed in table 4 for four different times (t = 0.5, 1.0, 1.5, 2.0).
A good consistency in the accuracy among solutions at different times (or equivalently, over
2000 iterations) is observed. The DSC results are quite accurate when N = M = 4 and are
of machine precision when N = M = 32. It is interesting to note that for fixed M = 4, the
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results of N = 32 and 4 differ little in accuracy. We also checked the DSC finite-difference
approximation at the tridiagonal matrix limit (M = 1) and the result is very good for N = 4
(i.e. a total of four interior points in a (2π)2 box).

4. Discussion

The main purpose of this paper is to discuss the unified features of the discrete singular
convolution algorithm [25]. It is found that the implementations of the DSC algorithm using
a number of computational methods can be deduced from a single starting point, the method
of weighted residuals. This chain of deduction provides a unified approach for solving the
Fokker–Planck equation and other differential equations in general. Some of these deduction
relations are novel to the best of our knowledge.

We demonstrate that by adjusting the support of the DSC trial functions, the DSC algorithm
can be easily implemented either as a local method or as a global method. For this reason, the
present DSC approach has the accuracy of the global method, while maintaining the flexibility
of the local method for handling complex boundaries and geometry. In fact, the solution of
the Fokker–Planck equation of a previous paper [25] was obtained by using the global limit.
Whereas, in the present computations, a local approximation is used for all Fokker–Planck
problems. A comparison between global and local DSC treatments is given in solving the
Euler equation.

We also show that the DSC implementations of Galerkin and collocation are
computationally equivalent, i.e. the collocation, equation (8) can be deduced from the Galerkin
equation (6) because of the choice of the DSC trial functions. Galerkin methods have a
profound influence on the theory of approximations. Both spectral methods and finite-element
methods are often formulated within the framework of the Galerkin approach. There has been
a great deal of argument about the advantages and disadvantages of the Galerkin approach
in comparison to many other methods. The present DSC approach might provide a unified
framework for a discussion of these methods.

The present Galerkin-induced collocation scheme provides a natural base for the
realization of finite-difference methods. High-order finite difference is not a new idea in
numerical approximations [31]. However, the mathematical construction of high-order finite-
difference schemes often become too cumbersome to use in practical applications as the
order increases. The present DSC approach provides a simple, systematic algorithm for the
generation of finite-difference schemes of an arbitrary order. The implementation of this finite
difference is demonstrated by solving the Euler equation with a number of different matrix
bandwidths.

Recently, wavelet theory and techniques have had great success in signal processing, data
compression and telecommunication. The two most important features of the wavelet theory
are multiresolution analysis and time–frequency localization. Their potential applications in
solving partial differential equations have been explored extensively [45–50] in the hope of
finding unified approaches for numerical approximations. However, before wavelet approaches
can be of practical use, a number of technical difficulties have to be overcome. In our view, the
first difficulty is the implementation of boundary conditions in a multiresolution setting. The
second difficulty is the requirement of sufficiently high wavelet regularity to provide sufficiently
weak solutions. Moreover, there is a lack of general and systematic numerical algorithms
for incorporating wavelets in an efficient manner. Nevertheless, the wavelet multiresolution
analysis still has great potential for developing adaptive grid and multigrid algorithms. The
present DSC algorithm is closely related to the wavelet theory [25, 35]. In fact, the DSC kernels
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have a feature in common with wavelets in terms of time–frequency (position–momentum)
localization. However, unlike in a wavelet algorithm, multiresolution analysis is feasible but
it is not required in the DSC algorithm.

In contrast to our earlier work dealing with the application of the DSC approach to
the Fokker–Planck equation via an eigenfunction expansion [25], we have explored in this
paper a DSC-based time-propagation approach for solving the Fokker–Planck equation. Three
typical DSC kernels, the regularized Shannon kernel, the regularized Dirichlet kernel and the
regularized Lagrange kernel, are used as trial functions within the framework of the present
method. Four benchmark examples are chosen to demonstrate the usefulness and to test the
accuracy of the present DSC approach. The first example is the repulsive Wong process.
This is used for objectively testing the ability of the method to handle the monomodality–
bimodality transition. The Wong process requires a large computational domain to ensure that
the boundary reflection of the density flux has little influence in a highly accurate computation.
By using reasonable resolution, regularization and a quite large time increment, the present
approach performs very well in characterizing the transition. In fact, the present unified
approach delivers machine accuracy at an early time.

The Black–Scholes equation of option pricing was chosen as the second numerical
example. This financial equation can be regarded as a reaction–diffusion equation, although,
its derivation was entirely based on stochastic analysis. By using a simple transformation, the
Black–Scholes equation is converted into the standard form of the Fokker–Planck equation
which admits an analytical solution. The present numerical results for the Black–Scholes
equation are obtained by using three different DSC kernels with a reasonable resolution and
relatively large time mesh. The extremely high accuracy in the present calculation indicates
that the DSC-based unified algorithm is a valuable potential approach for various option pricing
simulations.

The third example treated is a nonlinear stochastic model. The effective potential of the
corresponding Fokker–Planck equation is time dependent through the first-order moment of
the transition probability density. Despite the nonlinearity and the poor approximation of
the initial density distribution, the numerical solutions quickly settle to a smooth, stable and
correct distribution after a few iterations. This is due to the fact that the DSC trial functions
are chosen as Schwartz class functions and they are capable of auto-regularizing when used as
integration kernels. Our results are of machine precision at a relatively later time. To the best
of our knowledge, this is the best numerical solution to this nonlinear Fokker–Planck equation
to date. These illustrative calculations indicate that the present unified approach is extremely
accurate, efficient and robust for numerical simulations of stochastic systems.

A common feature in the above-mentioned Fokker–Planck equation is that the equation is
of strong parabolic type and the solution decays as time increases. Therefore, it is necessary
to employ an additional example to validate the present DSC algorithm further for handling
more complicated partial differential equations. To this end, we choose the incompressible
Euler equation where its velocity field equations are of strong hyperbolic type and a derived
equation for the pressure is of elliptic type. A standard implicit Euler scheme is used for
the time discretization and at each time tn+1, linear algebraic equations are constructed by
using the collocation method. In the present approach, carrying out differentiations in the
collocation is equivalent to implementing the finite-difference weights computed from the
DSC trial functions. We test the DSC algorithm by using 4, 8, 16 and 32 grid points in each
dimension in association with many different half-matrix bandwidths (M = 4, 8, 16 and 32).
As expected, the DSC algorithm achieves its highest accuracy at the global limit (M = N ) for
each given N . The machine precision is reached when N = M = 32. Very good results are
also obtained for many banded matrix calculations. We believe that the feature of being able
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to provide both global and local approximations in one formulation is of practical importance
for large-scale computations.

Although this paper emphasizes the connection of a few computational methods and the
unified features of the DSC approach, it claims neither that all computational methods are the
same, nor that the DSC algorithm engulfs all methods. For example, it is still not clear whether
the DSC algorithm is applicable in adaptive and unstructured grids (progress has been made
on a DSC multigrid method). The reader is urged to keep the distinction of various methods
in mind and maintain a perspective.
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